
Improved User News Feed Customization for an Open Source Search Engine

CS 297 Project Report

Presented to

Dr. Christopher Pollett

San Jose State University

By

Timothy Chow

May, 2019

Abstract

Yioop is an open source search engine project hosted on the site of the same name. It

offers several features outside of searching, with one such feature being a newsfeed.

The current newsfeed system aggregates articles from a curated list of news sites

determined by the owner. However in its current state, the feed is limited in size, being

able to utilize around 50 sources. One of the goals for my project will be to increase this

amount. I will also be implementing the ability for users to personalize the newsfeed for

their own use. In order to accomplish this task, I have spent the last five months working

to improve my own familiarity with Yioop, first by adding test cases and then slowly

working towards adding features.

Introduction

Within the realm of search engines, one particular subgroup that remains increasingly

important and relevant is the idea of vertical searches. Whereas a general search

allows for results to be returned based off a general relevance measure, vertical

searches aim to provide more directed results based off of some specific group or

interest, with one popular vertical slice that is particularly useful to most people being

news results. Yioop is one such search engine which provides this service to its users.

Yioop is an open source search engine built from PHP and made to be extensible for

general web, news, image searches, and even a fully functional discussion board and

wiki system. For this project, what I am interested in is the current implementation of the

news search or newsfeed system. Although it works fine right now, there is actually a

hidden limitation to it, where the amount of results returned cannot surpass a certain

amount. Normally for a regular search, we would ideally be able to traverse as many

results as the system has crawled, but in the case of newsfeed items, we have a hard

cap. The reasoning behind this is that regular search items are indexed and archived in

such a way that allows consecutive smaller sized chunks to read in, whereas the

newsfeed items right now are only stored directly on the database. While this provides

some benefit, in the form of easily being able sort from the most recent item to the

oldest item, we also cannot store as many. With this in mind, this also prevents us from

being able to add too many sources, otherwise the number of items per source would

either be small or unbalanced. In order to accomodate for more data in the future, I will

be working towards creating a system in which newsfeed items are stored in a similar

fashion to regular search items and eliminate this size limitation. Additionally I will have

a new system set up to take advantage of this change and allow users to suggest news

sources to Yioop, similar to how it already is for general web page crawl sources.

Deliverable 1: Additional Test Cases for IndexShardTest

To ease into this project, I started off with the simple task of writing up new tests

for the existing functions in Yioop. To keep it relevant, I wrote test cases for the

IndexShard class, which is the data structure used to store a generation’s worth of the

inverted index. IndexShards are then compiled into an IndexArchiveBundle which is the

primary way that crawl results are stored and retrieved from for the search engine.

The main goal of this particular deliverable is to gain some knowledge of what

sort of methods are used from an instance of IndexShard. This is sort of accomplished

by looking at the unit test code to see what main methods are usually called. From the

test cases, the major function of IndexShard is to act as a data structure meant to store

either documents or links to documents. This is done by using addDocumentWords(),

which takes a document id, a posting list, some meta id, and finally an offset. There is

also an additional argument for whether we are adding a document or a link. Once

documents have been added, we can then perform a search using getPostingSliceById,

which will return a result set containing the all documents that contain a certain word in

their posting list. Other operations include taking two IndexShards and combining them

together to create a bigger one, as well as changing the offset of the documents in the

shard.

One of the first things that I noticed while working with this test was that some of

the tests were out of date. For example, the flag for adding either documents or links

was completely reversed in IndexShard, but the tests do not reflect that change.

Additionally, the test to merge multiple shards implies that three shards supposed to be

merged, but the actual test only constructs two shards. The documents that were

supposed to be added to a third shard were actually being added to the first shard.

Miraculously, none of the existing tests failed, but I went ahead and fixed those as well

as added a few more just to more it more robust. Modifying this test was also a good

opportunity to get into the workflow of pushing new changes to Yioop. This included

getting the most recent revision of Yioop at all times, adding my own changes, then

creating a patch to upload to the issue tracker for Yioop. While seemingly a slow

process, it served as a way to really look over the changes I made in the code and

making sure there was no unexpected behavior.

Deliverable 2: Word Tracker to Display Trending Words on Yioop

After some experience in modifying something simple in Yioop, it was time to add

something a little more ambitious to the system. The idea was simple, to work with the

job which was most closely related to the newsfeed system and put some extra

functionality into it. For this deliverable, I added a new tool, tentatively called the word

tracker. In order to develop word tracker, it was necessary to understand a few thing:

the how Yioop updated its index, how data was temporarily stored, and how to

subsequently read that data and display on a web page. By the end of this deliverable, I

should have good knowledge on how index construction happens, how to add data to

the existing database, and how to add a new page to Yioop.

The first part of the process begins in MediaJob, which in turn calls

FeedUpdateJob. FeedUpdateJob is a process that runs every hour to update the index

shard. New documents are obtained from a predeterminded source list, and their

contents are added into the database. After all the documents have been parsed, the

job will rebuild the feed shard looking only at fresh documents which, in our case, are

those which at less than a week old. After rebuilding the shard, old items are pruned. To

add my functionality for word tracking, I have it so that the word occurrences are saved

into a new table within the database. Here, stop words are filtered out before also

getting stemmed in order to avoid redundant words. The table keeps track the top

hourly, daily, and weekly 25 words. The top hourly words are the simply the top words

for this run of FeedUpdateJob, but the top daily and weekly words are calculated using

the past 24 hours and the past 7 days worth of data respectively. Once this is calculated

and saved, old data is deleted from the table.

Now that we have actual data to work with, we need some place to view it. At its

core, Yioop uses a basic model-view-controller architecture, creating a basic loop of

users interacting with a controller which either modifies or grabs data from the model,

and that in turn displays a view back to the user. Web pages using a basic view page as

the base before rendering individual elements on top of that view. Each element should

have the necessary data passed into it using a corresponding model. In my case, I

wrote a TrendingModel which pulls the necessary data from the database and passes to

a TrackerElement which renders on top of the SearchView. I also reworked the

SearchController and main index file such that you can reach the word tracker tool from

"yioop.com/trending". Alternatively, one can reach it from the tools page located on the

footer.

Deliverable 3: Prototype user Interface for user added news sources

One part of the final product is to expand on the number of sources that can be

added to the newsfeed and, subsequently, the number of results. A different part is to

allow non administrative users to add news sources that will be crawled. This

deliverable deals with planning the latter part of this task.

From the top, we need to deal with two important questions, how should users be

able to add these new sources to Yioop, and after they are added, what can we do with

them? In my prototype, users will need to be logged into Yioop in order to even suggest

a source, as a mostly to preventative measure against potential spam from random

anonymous people. Once logged into their account, there will be a new option to

suggest a source using a form. This form is mostly derived from the same exact format

that admins can use to add sources, and in essence it is a standard form with dynamic

fields based on which type of media source is being added. So far, the supported types

include RSS, HTML, JSON, and regular expression feeds, as well as podcasts. At the

bare minimum, each source needs be given a name to identify by, the URL that Yioop

will run FeedUpdateJob on, and the language of the source. With other sources, they

may be some additional fields, such as indicators to parse feeds. In order to incorporate

this feature, there will need to be changes made to SocialComponent and SourceModel,

plus a new SuggestnewsElement will need to be added.

When a suggestion is made by a user, the item is automatically added into the

database. However, it is entirely possible and probable that the source might not work

entirely. As a result, these recently added sources will default to being disabled, and the

FeedUpdateJob will ignore them. The final decision to use the source is left to users

with root privilege and can manually enable or disable sources within their account.

Ideally root users should use the built-in testing function within Yioop to check for errors

before letting sources be used in order to avoid errors down the road.

Deliverable 4: Prototype framework for NewsFeedBundle

The other part that will need to be fleshed out for this project is to create a

system that will allow more news results to be stored. Currently, Yioop runs

MediaUpdater which aggregates several different update jobs. The job we are

interested in is the FeedUpdateJob, which looks at a list of sources from the

MEDIA_SOURCES table in the database. For each source, we parse out the necessary

information, add it into the database in FEED_ITEMS. The problem with this existing

approach is that storing it exclusively in the database puts some limitations on how

many items we can store. In contrast, the main search engine part of Yioop stores items

using IndexShards, which are grouped into bundles as each shard is only meant to

store up to a certain limit. During a crawl, we just add whatever document or link that we

see and then move on. For a news crawl however, it would be prudent to design it in

such a way that we access the newest items first before moving backwards in time.

Since it is stored on the database right now, it is simple to just sort through by

timestamp in descending order, but the goal of this project is to migrate this storage into

shards and bundles, hence NewsFeedBundles.

There are two current approaches to going about this, one would be designing a

new class that constructs the shards and the dictionaries inside each one in reverse

order, and the other would be to keep the existing construction method, but instead we

change it so that we traverse it backwards. The plan right now is go with the second

method, with the expectation of making as few minimal changes as possible to the

existing code. For IndexArchiveBundle, I might need to create a flag setting which would

tell subsequent iterators to read the shards and their in reverse as opposed to the

usual. Just for convenience, I will refer to bundles with this flag set as reverse bundles.

When an iterator reads in a reverse bundle, one way we could accommodate this is to

start our numbering at zero and actually move into the negatives the more recent

something is. That way, our iterator would still be going from recent to old, while also

retaining the old format of going from small to high.

Conclusion

The work that was performed in CS 297 is intended to help or benefit myself

greatly when I finally start to work on the actual final deliverable for CS 298. For each of

these deliverables, there is a certain focus to it, mostly centered around working and

dealing with Yioop, since that is basically what I will continue to work with. The first

deliverable served as a simple introduction to the sort of classes that I should be paying

attention to, while the second and third deliverables had me actually work and improve

on the existing code for Yioop in both the front and back end. Finally, the fourth

deliverable is intended to act as a starting point from where I can begin CS 298.

Assuming that everything works out by the end of CS 298, there should eventually be a

full on revision to the existing method of feed item storage.

References

[1] Jongdeog Lee, Daniel Xu, Md Tanvir Al Amin, Tarek Abdelzaher; iApollo: A

Newsfeed Summary Service on NDN; iEEE, 2017.

[2] Nicola Ferro, Yubin Kim, Mark Sanderson; Using Collection Shards to Study

Retrieval Performance Effect Sizes; ACM, 2019.

[3] Bo Long, Yi Change; Relevance Ranking for Vertical Search Engines; 2014

[4] Pollett, C. "Open Source Search Engine Software!" Open Source Search Engine

Software. ​https://www.seekquarry.com/

https://www.seekquarry.com/

